
Linear Algebra I

31/01/2017, Tuesday, 14:00 – 17:00

You are NOT allowed to use any type of calculators.

 Linear systems of equations (2 + 3 + 3 + 2 + 2 + 3 = 15 pts)

Consider the linear systems of equations


2 −3 −1 2 3
4 −4 −1 4 11
2 −5 −2 2 −1
0 2 1 0 4



x1
x2
x3
x4
x5

 =


4
4
9
−5

 .
(a) Write down the corresponding augmented matrix.

(b) Put it into the row echelon form.

(c) Put it into the reduced row echelon form.

(d) What is the rank of the augmented matrix?

(e) Determine the lead and free variables.

(f) Find the solution set.

Required Knowledge: Gauss-elimination, row operations, row echelon form, set
of solutions, and rank.

Solution:

1a: The augmented matrix is given by
2 −3 −1 2 3

... 4

4 −4 −1 4 11
... 4

2 −5 −2 2 −1
... 9

0 2 1 0 4
... −5

 .

1b: By applying row operations, we obtain:


2 −3 −1 2 3

... 4

4 −4 −1 4 11
... 4

2 −5 −2 2 −1
... 9

0 2 1 0 4
... −5


2nd = 2nd− 2× 1st

3rd = 3rd− 1st
−−−−−−−−−−−−−−−−−→


2 −3 −1 2 3

... 4

0 2 1 0 5
... −4

0 −2 −1 0 −4
... 5

0 2 1 0 4
... −5






2 −3 −1 2 3

... 4

0 2 1 0 5
... −4

0 −2 −1 0 −4
... 5

0 2 1 0 4
... −5


3rd = 3rd + 2nd
4th = 4th− 2nd
−−−−−−−−−−−−−−→


2 −3 −1 2 3

... 4

0 2 1 0 5
... −4

0 0 0 0 1
... 1

0 0 0 0 −1
... −1




2 −3 −1 2 3
... 4

0 2 1 0 5
... −4

0 0 0 0 1
... 1

0 0 0 0 −1
... −1


4th = 4th + 3rd
−−−−−−−−−−−−−→


2 −3 −1 2 3

... 4

0 2 1 0 5
... −4

0 0 0 0 1
... 1

0 0 0 0 0
... 0

 .

Therefore, we obtain the row echelon form as follows:
2 −3 −1 2 3

... 4

0 2 1 0 5
... −4

0 0 0 0 1
... 1

0 0 0 0 0
... 0


1st = 1

2 × 1st
2nd = 1

2 × 2nd
−−−−−−−−−−−−→


1 − 3

2 − 1
2 1 3

2

... 2

0 1 1
2 0 5

2

... −2

0 0 0 0 1
... 1

0 0 0 0 0
... 0

 .

1c: We can continue row operations to obtain the reduced form:


1 − 3

2 − 1
2 1 3

2

... 2

0 1 1
2 0 5

2

... −2

0 0 0 0 1
... 1

0 0 0 0 0
... 0


2nd = 2nd− 5

2 × 3rd
1st = 1st− 3

2 × 3rd
−−−−−−−−−−−−−−−−−−→


1 − 3

2 − 1
2 1 0

... 1
2

0 1 1
2 0 0

... − 9
2

0 0 0 0 1
... 1

0 0 0 0 0
... 0

 .


1 − 3

2 − 1
2 1 0

... 1
2

0 1 1
2 0 0

... − 9
2

0 0 0 0 1
... 1

0 0 0 0 0
... 0


1st = 1st + 3

2 × 2nd
−−−−−−−−−−−−−−−−→


1 0 − 1

4 1 0
... 25

4

0 1 1
2 0 0

... − 9
2

0 0 0 0 1
... 1

0 0 0 0 0
... 0

 .

1d: The rank of the matrix is equal to the number of linearly independent row. Hence, the
rank of the augmented matrix is 3.

1e: The lead variables are x1, x2, and x5 whereas x3 and x4 are free variables.

1f: The general solution is given by
x1

x2

x5

 =


25
4

− 9
2

1

+ x3


1
4

− 1
2

0

+ x4


−1

0

0





 Determinants (10 pts)

Find the determinant of the matrix 
1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64

 .

Required Knowledge: Determinants, row/column operations.

Solution:

Direct calculations yield:

det


1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64

 = det


1 1 1 1
0 1 2 3
0 3 8 15
0 7 26 63

 [row operations of type III]

= det

1 2 3
3 8 15
7 26 63

 [expansion w.r.t. the first row]

= det

1 2 3
0 2 6
0 12 42

 [row operations of type III]

= det

(
2 6
12 42

)
= 2 · 3 · det

(
1 3
4 14

)
= 6 · (14− 12) = 12.



 Vector spaces (4 + 8 + 8 = 20 pts)

Let V be the vector space of functions of the form

aex + bxex + cx2ex

where a, b, and c are scalars. Let L : V → V be given by

L(f) = f + f ′.

(a) Is L a linear transformation?

(b) Find the matrix representing L with respect to the basis {ex, xex, x2ex}.

(c) Using the matrix representation obtained in ??, find the solution of the differential equation:

f(x) + f ′(x) = 2(1 + x+ x2)ex.

Required Knowledge: Vector spaces, subspaces, linear transformations, matrix
representations.

Solution:

3a: Let α be a scalar and f ∈ V . Then, we have L(αf) = (αf) + (αf)′ = α(f + f ′) = αL(f).
Now, let g ∈ V . Then, we have L(f + g) = (f + g) + (f + g)′ = (f + f ′) + (g+ g′) = L(f) +L(g).
Therefore, L is a linear transformation.

3b: To find the matrix representation, we apply L to the basis vectors:

L(ex) = ex + (ex)′ = 2ex = 2 · ex + 0 · xex + 0 · x2ex

L(xex) = xex + (xex)′ = xex + ex + xex = ex + 2xex = 1 · ex + 2 · xex + 0 · x2ex

L(x2ex) = x2ex + (x2ex)′ = x2ex + 2xex + x2ex = 2xex + 2x2ex = 0 · ex + 2 · xex + 2 · x2ex.

Therefore, the matrix representing L is2 1 0
0 2 2
0 0 2

 .
3c: The differential equation

f(x) + f ′(x) = 2(1 + x+ x2)ex

is equivalent to the linear system of equations2 1 0
0 2 2
0 0 2

ab
c

 =

2
2
2

 .
This leads to the solution c = 1, b = 0, and a = 1. Consequently, the solution of the differential
equation is given by

f(x) = ex + x2ex.



 Least squares problem (15 pts)

Find the ellipse a2x2 + b2y2 = 1 that gives the best least squares approximation to the points:

x −2 0 0 2

y 0 −
√

2 1 0

Required Knowledge: Least-squares problem, normal equations.

Solution:

Let α = a2 and β = b2. Then, we want to solve the least squares problem:
4 0
0 2
0 1
4 0

[αβ
]

=


1
1
1
1

 .
The corresponding normal equations are given by:[

32 0
0 5

] [
α
β

]
=

[
8
3

]
.

Therefore, we obtain α = 1
4 and β = 3

5 . Consequently, a = ± 1
2 and b = ±

√
3√
5
.



 Characteristic polynomial (2 + 2 + 2 + 2 + 2 = 10 pts)

Let A ∈ R4×4 and det(A− λI) = λ4 − 5λ2 + 4.

(a) Determine the determinant of A.

(b) Is A nonsingular? Why?

(c) Determine rank(A).

(d) Find all eigenvalues of A.

(e) Is A diagonalizable?

Required Knowledge: Characteristic polynomial, eigenvalues, determinant, di-
agonalizability.

Solution:

5a: det(A) = det(A− 0 · I) = 4.

5b: Since det(A) 6= 0, A is nonsingular.

5c: Since A is nonsingular, its columns are linearly independent and hence rank(A) = 4.

5d: Eigenvalues are roots of the characteristic polynomial. Note that λ4 − 5λ2 + 4 = (λ2 −
1)(λ2 − 4). Therefore, eigenvalues of A are λ1,2 = ∓1 and λ3,4 = ∓2.

5e: Since all eigenvalues are distinct, it is diagonalizable.



 Eigenvalues/vectors ((3 + 6 + 6) + 5 = 20 pts)

(a) Consider the matrix 2 1 2
1 2 −2
2 −2 −1

 .
(i) Show that −3 and 3 are its eigenvalues.

(ii) Find its eigenvectors corresponding to these eigenvalues.

(iii) Is it diagonalizable? If so, find a diagonalizer.

(b) By using the definition of matrix exponential, find eA where

A =

0 1 0
0 0 1
0 0 0

 .

Required Knowledge: Eigenvalues, eigenvectors, and diagonalization, matrix ex-
ponential.

Solution:

6a(i): We know that λ is an eigenvalue of A if and only if A− λI is singular.
Therefore, −3 is an eigenvalue if and only if

det

5 1 2
1 5 −2
2 −2 2

 = 0.

Note that

det

5 1 2
1 5 −2
2 −2 2

 = det

3 3 0
3 3 0
2 −2 2

 [row operations]

= 0. [first two rows are identical]

As such, −3 is an eigenvalue.
For 3, we need to check that whether−1 1 2

1 −1 −2
2 −2 −4


is singular. Since the third row is twice the second, we have

det

−1 1 2
1 −1 −2
2 −2 −4

 = 0

and hence 3 is an eigenvalue.
The matrix A has an eigenvalue λ if and only if det(A− λI) = 0. Note that

det(A− I) = det(

0 1 1
0 −1 1
0 −1 −1

) = 0

as the first column consists entirely of zeros. Therefore, 1 is an eigenvalue of A.



6b: Note that

det(A− λI) = det(

1− λ 1 1
0 −λ 1
0 −1 −λ

) = (1− λ) det(

[
−λ 1
−1 −λ

]
) = (1− λ)(λ2 + 1).

This results in the eigenvalues λ1 = 1, λ2,3 = ±i.

6c: In order to find a diagonalizer, we need to compute an eigenvector for each eigenvalue:

(a) λ1 = 1: Note that

0 = (A− I)x1 =

0 1 1
0 −1 1
0 −1 −1

x1
results in

x1 =

1
0
0

 .
(b) λ2 = i: Note that

0 = (A− iI)x2 =

1− i 1 1
0 −i 1
0 −1 −i

x2
results in

x2 =

−i1
i

 .
(c) λ3 = −i: Note that

0 = (A− iI)x3 =

1 + i 1 1
0 i 1
0 −1 i

x3
results in

x3 =

 i
1
−i

 .
Therefore, one can take

T =
[
x1 x2 x3

]
=

1 −i i
0 1 1
0 i −i

 .
To verify that T is a diagonalizer, note that

AT =

1 1 1
0 0 1
0 −1 0

1 −i i
0 1 1
0 i −i

 =

1 1 1
0 i −i
0 −1 −1


and

T

1 0 0
0 i 0
0 0 −i

 =

1 −i i
0 1 1
0 i −i

1 0 0
0 i 0
0 0 −i

 =

1 1 1
0 i −i
0 −1 −1

 .




